Injection of gases into the stratosphere by explosive volcanic eruptions

نویسندگان

  • Christiane Textor
  • Michael Herzog
  • J. M. Oberhuber
چکیده

[1] Explosive eruptions can inject large amounts of volcanic gases into the stratosphere. These gases may be scavenged by hydrometeors within the eruption column, and high uncertainties remain regarding the proportion of volcanic gases, which eventually reach the stratosphere. These are caused by the difficulties of directly sampling explosive volcanic eruption columns and by the lack of laboratory studies in the extreme parameter regime characterizing them. Using the nonhydrostatic nonsteady state plume model Active Tracer High Resolution Atmospheric Model (ATHAM), we simulated an explosive volcanic eruption. We examined the scavenging efficiency for the climatically relevant gases within the eruption column. The low concentration of water in the plume results in the formation of relatively dry aggregates. More than 99% of these are frozen because of their fast ascent to low-temperature regions. Consideration of the salinity effect increases the amount of liquid water by one order of magnitude, but the ice phase is still highly dominant. Consequently, the scavenging efficiency for HCl is very low, and only 1% is dissolved in liquid water. However, scavenging by ice particles via direct gas incorporation during diffusional growth is a significant process. The salinity effect increases the total scavenging efficiency for HCl from about 50% to about 90%. The sulfur-containing gases SO2 and H2S are only slightly soluble in liquid water; however, these gases are incorporated into ice particles with an efficiency of 10 to 30%. Despite scavenging, more than 25% of the HCl and 80% of the sulfur gases reach the stratosphere because most of the particles containing these species are lifted there. Sedimentation of the particles would remove the volcanic gases from the stratosphere. Hence the final quantity of volcanic gases injected in a particular eruption depends on the fate of the particles containing them, which is in turn dependent on the volcanic and environmental conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long range transport and fate of a stratospheric volcanic cloud from Soufriere Hills volcano, Montserrat

Volcanic eruptions emit gases, ash particles and hydrometeors into the atmosphere, occasionally reaching heights of 20 km or more, to reside in the stratospheric overworld where they affect the radiative balance of the atmosphere and the Earth’s climate. Here we use satellite measurements and a Lagrangian particle dispersion model to determine the mass loadings, vertical penetration, horizontal...

متن کامل

The 1257 Samalas eruption (Lombok, Indonesia): the single greatest stratospheric gas release of the Common Era

Large explosive eruptions inject volcanic gases and fine ash to stratospheric altitudes, contributing to global cooling at the Earth's surface and occasionally to ozone depletion. The modelling of the climate response to these strong injections of volatiles commonly relies on ice-core records of volcanic sulphate aerosols. Here we use an independent geochemical approach which demonstrates that ...

متن کامل

New geochemical insights into volcanic degassing.

Magma degassing plays a fundamental role in controlling the style of volcanic eruptions. Whether a volcanic eruption is explosive, or effusive, is of crucial importance to approximately 500 million people living in the shadow of hazardous volcanoes worldwide. Studies of how gases exsolve and separate from magma prior to and during eruptions have been given new impetus by the emergence of more a...

متن کامل

Evidence for Recent Large Magnitude Explosive Eruptions at Damavand Volcano, Iran with Implications for Volcanic Hazards

Damavand is a large dormant stratovolcano in the Alborz Mountains of northern Iran located in one of the most populous provinces, which could be adversely affected by tephra fall from Damavand. The youngest known eruption is a lava flow on the western flanks with an age of 7.3 ka. The volcanic products are predominantly porphyritic trachyandesite. Three major young pumice deposits, named here a...

متن کامل

Short-term climatic impact of the 1991 volcanic eruption of Mt. Pinatubo and effects on atmospheric tracers

Large explosive volcanic eruptions are capable of injecting considerable amounts of particles and sulphur gases (mostly sulphur dioxide) above the tropopause, causing increases in the stratospheric aerosol optical depth that may be even larger than one order of magnitude. The efolding particle lifetime in the stratosphere is much longer than in the troposphere (one year versus a few days) so th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003